Fundamentals of the modern theory of the phenomenon of "pain" from the perspective of a systematic approach. Neurophysiological basis. Part 1: A brief presentation of key subcellular and cellular ctructural elements of the central nervous system.

  • V I Poberezhnyi Private enterprise “Medical innovative technologies”
  • O V Marchuk Vinnytsia National Pirogov Memorial Medical University
  • O S Shvidyuk Private enterprise “Medical innovative technologies”
  • I Y Petrik Private enterprise “Medical innovative technologies”
  • O S Logvinov Vinnytsia Regional Center for Emergency Medical Care and Disaster Medicine
Keywords: “pain”, central nervous system, nervous tissue, neuron, spines, dendrites, soma, axon, computational properties, glial cells, astrocytes, oligodendrocytes, microglial cells

Abstract

The phenomenon of “pain” is a psychophysiological phenomenon that is actualized in the mind of a person as a result of the systemic response of his body to certain external and internal stimuli. The heart of the corresponding mental processes is certain neurophysiological processes, which in turn are caused by a certain form of the systemic structural and functional organization of the central nervous system (CNS). Thus, the systemic structural and functional organization of the central nervous system of a person, determining the corresponding psychophysiological state in a specific time interval, determines its psycho-emotional states or reactions manifested by the pain phenomenon.

The nervous system of the human body has a hierarchical structure and is a morphologically and functionally complete set of different, interconnected, nervous and structural formations. The basis of the structural formations of the nervous system is nervous tissue. It is a system of interconnected differentials of nerve cells, neuroglia and glial macrophages, providing specific functions of perception of stimulation, excitation, generation of nerve impulses and its transmission.

The neuron and each of its compartments (spines, dendrites, catfish, axon) is an autonomous, plastic, active, structural formation with complex computational properties. One of them – dendrites – plays a key role in the integration and processing of information.

Dendrites, due to their morphology, provide neurons with unique electrical and plastic properties and cause variations in their computational properties. The morphology of dendrites: 1) determines – a) the number and type of contacts that a particular neuron can form with other neurons; b) the complexity, diversity of its functions; c) its computational operations; 2) determines – a) variations in the computational properties of a neuron (variations of the discharges between bursts and regular forms of pulsation); b) back distribution of action potentials.

Dendritic spines can form synaptic connection – one of the main factors for increasing the diversity of forms of synaptic connections of neurons. Their volume and shape can change over a short period of time, and they can rotate in space, appear and disappear by themselves. Spines play a key role in selectively changing the strength of synaptic connections during the memorization and learning process.

Glial cells are active participants in diffuse transmission of nerve impulses in the brain. Astrocytes form a three-dimensional, functionally “syncytia-like” formation, inside of which there are neurons, thus causing their specific microenvironment. They and neurons are structurally and functionally interconnected, based on which their permanent interaction occurs. Oligodendrocytes provide conditions for the generation and transmission of nerve impulses along the processes of neurons and play a significant role in the processes of their excitation and inhibition. Microglial cells play an important role in the formation of the brain, especially in the formation and maintenance of synapses.

Thus, the CNS should be considered as a single, functionally “syncytia-like”, structural entity. Because the three-dimensional distribution of dendritic branches in space is important for determining the type of information that goes to a neuron, it is necessary to consider the three-dimensionality of their structure when analyzing the implementation of their functions.

Downloads

Download data is not yet available.

References

Poberezhnyi VI, Marchuk OV, Shvidyuk OS, Petrik IY. Fundamentals of the modern theory of the phenomenon of “pain” in terms of a systematic approach to issues its psychological component. Terminology of the systemic approach and a brief representation of the human body as a system. PMJUA [Internet]. 2018Aug.1; 3(2):6-23. Available from: https://painmedicine.org.ua/index.php/pnmdcn/article/view/97

Poberezhnyi VI, Marchuk OV, Shvidyuk OS, Petrik IY. Fundamentals of the modern theory of the phenomenon of “pain” in terms of a systematic approach to issues its psychological component. Terminology of the systemic approach and a brief representation of the human body as a system. PMJUA [Internet]. 2018Aug.1; 3(2):6-23. Available from: https://painmedicine.org.ua/index.php/pnmdcn/article/view/97

Enikeev MI. Obshchaia i sotsialnaia psikhologiia (General and social psychology). Moscow: Infra-M; 1999. (In Russian)

Poberezhnyy VI, Marchuk OV. Applied significance of formalization of “pain” definition based on functional system approach. Short introducing of systems theory and its figurative and conceptual mechanism. The scheme of pathogenesis of pain phenomenon. PMJUA [Internet]. 2016Jun.1 [cited 2019Jul.15];1(2). Available from: https://painmedicine.org.ua/index.php/pnmdcn/article/view/11

Revenko SV, Ermishkin VV, A SL. Perifericheskie mekhanizmy notsitseptsii (Peripheral nociception mechanisms). Vol. 2. 1988. (In Russian)

Melzack R, Wall PD. Pain Mechanisms: A New Theory. Science [Internet]. American Association for the Advancement of Science (AAAS); 1965 Nov 19;150(3699):971–8. Available from: https://doi.org/10.1126/science.150.3699.971

Melzack R, Wall PD. Textbook of Pain. 3rd ed. Edinburg: Churchill Livingstone; 1994.

Kenshalo D. Sensory, motivational and central control determinants of pain. Springfield: Thomas; 1968.

Gatchel RJ, Turk DC. Pain and stress: A new perspective. Psychosocial factors in pain: Critical perspectives. New York: Guilford Press; 1999.

Kryzhanovsky GN. Tsentralnye mekhanizmy patologicheskoi boli (Central mechanisms of pathological pain). Nevrologiia i psikhiatriia. 1999;(99):4–7. (In Russian)

Apkarian AV. Chronic Back Pain Is Associated with Decreased Prefrontal and Thalamic Gray Matter Density. Journal of Neuroscience [Internet]. Society for Neuroscience; 2004 Nov 17;24(46):10410–5. Available from: https://doi.org/10.1523/jneurosci.2541-04.2004

Vinogradov OS. Neironauka kontsa vtorogo tysiacheletiia: smena paradigm (Neuroscience of the end of the second millennium: a paradigm shift). Zhurnal vysshey nervnoi deiatelnosti. 2000;50(5):743–74. (In Russian)

Pokrovskyi VM, Korotko GF. Fiziologiia cheloveka (Human physiology: a textbook). Moscow: Meditsina; 1997. (In Russian)

Aghajanyan ON, Smirnov VM. Normalnaia fiziologiia (Normal physiology). Moscow: Medical Information Agency Ltd; 2009. (In Russian)

Shevchuk VG. Fiziolohiia (Physiology). 2nd ed. Vinnytsia: Nova Knyha; 2015. (In Ukrainian)

Ovchinnikov NF, Yudin EG. Sovetskaya enciklopediya (Soviet encyclopedia). Moscow; 1976. (In Russian)

Poberezhnyi VI, Prokhorov DD, Shvidyuk OS. New approaches to study of electromagnetic field of human organism and its visceral organs as a base for creation of innovative diagnostic methods. PMJUA [Internet]. 2016Mar.1 [cited 2019Jul.15];1(1). Available from: https://painmedicine.org.ua/index.php/pnmdcn/article/view/4

Balabolkin MI. Endokrinologiya (Endocrinology). 2nd ed. Moscow: Universum Publishing; 1998. (In Russian)

Zajchik AS, Churilov LP. Obshaya patofiziologiya s osnovami immunopatologii (General pathophysiology with the basics of immunopathology). 4th ed. Saint Petersburg: LB; 2008. (In Russian)

Sidorov AV. Fiziologiya mezhkletochnoj kommunikacii (Physiology of intercellular communication). Minsk: BGU; 2008. (In Russian)

Ozhegov SI, Shvedova NY. Tolkovyj slovar russkogo yazyka (Explanatory dictionary of the Russian language). Moscow; 1997. (In Russian)

Slovar inostrannyh slov (Dictionary of foreign words). 13th ed. Moscow; 1986. (In Russian)

Zenovich ES. Slovar inostrannyh slov i vyrazhenij (Dictionary of foreign words and expressions). Izdatelstvo AST; 2002. (In Russian)

Encyclopedia Britannica. Multimedia, 1997.

Afanasev YL, Yurina NA, Kotovskyi EF. Gistologiya, embriologiya, citologiya (Histology, embryology, cytology). 6th ed. 2012. (In Russian)

Changeux JP, Garey L. Neuronal Man – The Biology of Mind. Princeton University Press; 1997:28.

French RD. Some problems and sources in the foundation of modern physiology in Great Britain. Hist. Sci., 1971;10:28–9.

Mednikov BM. Biologiya: formy i urovni zhizni (Biology: forms and standards of living). Moscow: Prosveshenie; 1994. (In Russian)

Pokrovskyi VM, Korotko GF. Fiziologiia cheloveka (Human physiology: a textbook). Moscow: Meditsina; 1997. (In Russian)

Aghajanyan ON, Smirnov VM. Normalnaia fiziologiia (Normal physiology). Moscow: Medical Information Agency Ltd; 2009. (In Russian)

Shevchuk VG. Fiziolohiia (Physiology). 2nd ed. Vinnytsia: Nova Knyha; 2015. (In Ukrainian)

Smirnov VM. Nejrofiziologiya i vysshaya nervnaya deyatelnost detej i podrostkov (Neurophysiology and higher nervous activity in children and adolescents). Moscow: Izdatelskij centr “Akademiya”; 2000. (In Russian)

Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology [Internet]. Wiley; 1952 Aug 28;117(4):500–44. Available from: https://doi.org/10.1113/jphysiol.1952.sp004764

Malmivuo J, Plonsey R. Bioelectromagnetism. Oxford University Press: New York, Oxford; 1995.

Shmidt R, Tevs G. Fiziologiya cheloveka (Human physiology). Vol. 1. Moscow: Mir; 2007. (In Russian)

Finch EA, Augustine GJ. Local calcium signalling by inositol-1,4,5-trisphosphate in Purkinje cell dendrites. Nature [Internet]. Springer Nature; 1998 Dec;396(6713):753–6. Available from: https://doi.org/10.1038/25541

Skulachev VP. Mitochondrial filaments and clusters as intracellular power-transmitting cables. Trends in Biochemical Sciences [Internet]. Elsevier BV; 2001 Jan;26(1):23–9. Available from: https://doi.org/10.1016/s0968-0004(00)01735-7

Stępkowski TM, Męczyńska-Wielgosz S, Kruszewski M. mitoLUHMES: An Engineered Neuronal Cell Line for the Analysis of the Motility of Mitochondria. Cellular and Molecular Neurobiology [Internet]. Springer Nature; 2016 Nov 10;37(6):1055–66. Available from: https://doi.org/10.1007/s10571-016-0438-0

Popov VI, Medvedev NI, Rogachevsky VV. Tryohmernaya organizaciya sinapsov i astroglii v gippokampe krys i suslikov (Three-dimensional organization of synapses and astroglia in the hippocampus of rats and ground squirrels). Biofizika. 2003;48(2):289–308. (In Russian)

Lewis TL, Kwon S-K, Lee A, Shaw R, Polleux F. MFF-dependent mitochondrial fission regulates presynaptic release and axon branching by limiting axonal mitochondria size. Nature Communications [Internet]. Springer Nature; 2018 Nov 27;9(1). Available from: https://doi.org/10.1038/s41467-018-07416-2

Rovira-Llopis S, Bañuls C, Diaz-Morales N, Hernandez-Mijares A, Rocha M, Victor VM. Mitochondrial dynamics in type 2 diabetes: Pathophysiological implications. Redox Biology [Internet]. Elsevier BV; 2017 Apr;11:637–45. Available from: https://doi.org/10.1016/j.redox.2017.01.013

Bereiter-Hahn J. Mitochondrial Dynamics in Aging and Disease. The Mitochondrion in Aging and Disease [Internet]. Elsevier; 2014;93–131. Available from: https://doi.org/10.1016/b978-0-12-394625-6.00004-0

Ni H-M, Williams JA, Ding W-X. Mitochondrial dynamics and mitochondrial quality control. Redox Biology [Internet]. Elsevier BV; 2015 Apr;4:6–13. Available from: https://doi.org/10.1016/j.redox.2014.11.006

Stępkowski TM, Męczyńska-Wielgosz S, Kruszewski M. mitoLUHMES: An Engineered Neuronal Cell Line for the Analysis of the Motility of Mitochondria. Cellular and Molecular Neurobiology [Internet]. Springer Nature; 2016 Nov 10;37(6):1055–66. Available from: https://doi.org/10.1007/s10571-016-0438-0

Lemasters JJ. Selective Mitochondrial Autophagy, or Mitophagy, as a Targeted Defense Against Oxidative Stress, Mitochondrial Dysfunction, and Aging. Rejuvenation Research [Internet]. Mary Ann Liebert Inc; 2005 Mar;8(1):3–5. Available from: https://doi.org/10.1089/rej.2005.8.3

Ashford TP. CYTOPLASMIC COMPONENTS IN HEPATIC CELL LYSOSOMES. The Journal of Cell Biology [Internet]. Rockefeller University Press; 1962 Jan 1;12(1):198–202. Available from: https://doi.org/10.1083/jcb.12.1.198

Youle RJ, Narendra DP. Mechanisms of mitophagy. Nature Reviews Molecular Cell Biology [Internet]. Springer Science and Business Media LLC; 2010 Dec 22;12(1):9–14. Available from: https://doi.org/10.1038/nrm3028

Virbasius JV, Scarpulla RC. Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: a potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis. Proceedings of the National Academy of Sciences [Internet]. Proceedings of the National Academy of Sciences; 1994 Feb 15;91(4):1309–13. Available from: https://doi.org/10.1073/pnas.91.4.1309

Gleyzer N, Vercauteren K, Scarpulla RC. Control of Mitochondrial Transcription Specificity Factors (TFB1M and TFB2M) by Nuclear Respiratory Factors (NRF-1 and NRF-2) and PGC-1 Family Coactivators. Molecular and Cellular Biology [Internet]. American Society for Microbiology; 2005 Jan 31;25(4):1354–66. Available from: https://doi.org/10.1128/mcb.25.4.1354-1366.2005

Ongwijitwat S, Wong-Riley MTT. Is nuclear respiratory factor 2 a master transcriptional coordinator for all ten nuclear-encoded cytochrome c oxidase subunits in neurons? Gene [Internet]. Elsevier BV; 2005 Oct;360(1):65–77. Available from: https://doi.org/10.1016/j.gene.2005.06.015

Scarpulla RC. Nuclear control of respiratory gene expression in mammalian cells. Journal of Cellular Biochemistry [Internet]. Wiley; 2006;97(4):673–83. Available from: https://doi.org/10.1002/jcb.20743

Scarpulla RC. Transcriptional Paradigms in Mammalian Mitochondrial Biogenesis and Function. Physiological Reviews [Internet]. American Physiological Society; 2008 Apr;88(2):611–38. Available from: https://doi.org/10.1152/physrev.00025.2007

Lang BF, Gray MW, Burger G. Mitochondrial Genome Evolution and the Origin of Eukaryotes. Annual Review of Genetics [Internet]. Annual Reviews; 1999 Dec;33(1):351–97. Available from: https://doi.org/10.1146/annurev.genet.33.1.351

Martin W, Herrmann RG. Gene Transfer from Organelles to the Nucleus: How Much, What Happens, and Why? Plant Physiology [Internet]. American Society of Plant Biologists (ASPB); 1998 Sep 1;118(1):9–17. Available from: https://doi.org/10.1104/pp.118.1.9

Bibb MJ, Van Etten RA, Wright CT, Walberg MW, Clayton DA. Sequence and gene organization of mouse mitochondrial DNA. Cell [Internet]. Elsevier BV; 1981 Oct;26(2):167–80. Available from: https://doi.org/10.1016/0092-8674(81)90300-7

Basu K, Lajoie D, Aumentado-Armstrong T, Chen J, Koning RI, Bossy B, et al. Molecular mechanism of DRP1 assembly studied in vitro by cryo-electron microscopy. Reddy H, editor. PLOS ONE [Internet]. Public Library of Science (PLoS); 2017 Jun 20;12(6):e0179397. Available from: https://doi.org/10.1371/journal.pone.0179397

Rovira-Llopis S, Bañuls C, Diaz-Morales N, Hernandez-Mijares A, Rocha M, Victor VM. Mitochondrial dynamics in type 2 diabetes: Pathophysiological implications. Redox Biology [Internet]. Elsevier BV; 2017 Apr;11:637–45. Available from: https://doi.org/10.1016/j.redox.2017.01.013

Voet D, Voet JG, Pratt ChW. Fundamentals of Biochemistry: Life at the Molecular Level. – New York City: John Wiley & Sons, Inc;2013:582–4.

Kolman Y, Ryom KG. Naglyadnaya biohimiya (Visual biochemistry). Moscow: Binom; 2012. (In Russian)

Berg JM, Tymoczko JL, Stryer L. Biochemistry, Fifth Edition: International Version. San Francisco: W.H. Freeman; 2002. 1100 р.

MITCHELL P, MOYLE J. Chemiosmotic Hypothesis of Oxidative Phosphorylation. Nature [Internet]. Springer Nature; 1967 Jan;213(5072):137–9. Available from: https://doi.org/10.1038/213137a0

Nelson DL, Lehninger AL, Cox MM. Lehninger Principles of biochem-istry. Fifth edition. N.Y.: W.H. Freeman and company; 2008. 1158 p.

Holmes JH, Sapeika N, Zwarenstein H. Inhibitory effect of anti-obesity drugs on NADH dehydrogenase of mouse heart homogenates. Res Commun Chem Pathol Pharmacol. 1975 Aug;11(4):645-6.

Ermakov IP. Fiziologiya rastenij (Plant physiology). Moscow: Academiya; 2005. (In Russian)

Sund Н and Ullrich V, ed. Biological Oxidations: 34. Colloquium – Mosbach. Berlin; Heidelberg; New York; Tokyo: Springer-Verlag, 1983:191.

Gorbikova EA, Belevich I, Wikstrom M, Verkhovsky MI. The proton donor for OO bond scission by cytochrome c oxidase. Proceedings of the National Academy of Sciences [Internet]. Proceedings of the National Academy of Sciences; 2008 Jul 29;105(31):10733–7. Available from: https://doi.org/10.1073/pnas.0802512105

Pierron D, Wildman DE, Hüttemann M, Markondapatnaikuni GC, Aras S, Grossman LI. Cytochrome c oxidase: Evolution of control via nuclear subunit addition. Biochimica et Biophysica Acta (BBA) - Bioenergetics [Internet]. Elsevier BV; 2012 Apr;1817(4):590–7. Available from: https://doi.org/10.1016/j.bbabio.2011.07.007

Schmidt FC. Fiziko-himicheskie osnovy kataliza (Physical and chemical bases of catalysis). Moscow: Fractal; 2004. (In Russian)

MITCHELL P, MOYLE J. Group-Translocation: A Consequence of Enzyme-Catalysed Group-Transfer. Nature [Internet]. Springer Nature; 1958 Aug;182(4632):372–3. Available from: https://doi.org/10.1038/182372a0

Mitchell P, Moyle J. Enzyme catalysis and group translocation. Proc. Roy. Phys. Soc. Edinburgh, 1958;27:61–72.

MITCHELL P. Coupling of Phosphorylation to Electron and Hydrogen Transfer by a Chemi-Osmotic type of Mechanism. Nature [Internet]. Springer Nature; 1961 Jul;191(4784):144–8. Available from: https://doi.org/10.1038/191144a0

Mitchell P (196l) in: Membrane Transport and Metabolism (Kleinzeller, A. and Kotyk, A., eds), Academic Press, New York:22–34.73.

Swift H. Biological Structure and Function. Proceedings of the First IUB/IUBS International Symposium, Stockholm. [Internet]. American Association for the Advancement of Science (AAAS); 1962 Aug 31;137(3531):661–661. Available from: https://doi.org/10.1126/science.137.3531.661

Mitchell P. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biological Reviews. 1966 Aug;41(3):445-501.

Mitchell PD. Chemiosmotic coupling and energy transduction. Glynn Research; 1968.

Mitchell P. Metabolism, Transport, and Morphogenesis: Which Drives Which? Journal of General Microbiology [Internet]. Microbiology Society; 1962 Sep 1;29(1):25–37. Available from: https://doi.org/10.1099/00221287-29-1-25

Mitchell P. Reversible coupling between transport and chemical reactions. Membranes and ion transport. 1970;1:192-256.

Mitchell P. Chemiosmotic Coupling in Energy Transduction: A Logical Development of Biochemical Knowledge. Membrane Structure and Mechanisms of Biological Energy Transduction [Internet]. Springer US; 1972;5–24. Available from: https://doi.org/10.1007/978-1-4684-2016-6_2

Mitchell P. Performance and conservation of osmotic work by proton-coupled solute porter systems. Journal of Bioenergetics [Internet]. Springer Science and Business Media LLC; 1973 Jan;4(1-2):63–91. Available from: https://doi.org/10.1007/bf01516051

Mechanisms in Bioenergetics. Elsevier; 1973; Available from: https://doi.org/10.1016/b978-0-120-68960-6.x5001-1

Mitchell P. in: Electron Transfer Chains and Oxidative Phosphorylation (E. Quagliariello et al., eds), North-Holland, Amsterdam, 1975:305–16.

Mitchell P. Possible molecular mechanisms of the protonmotive function of cytochrome systems. Journal of Theoretical Biology [Internet]. Elsevier BV; 1976 Oct;62(2):327–67. Available from: https://doi.org/10.1016/0022-5193(76)90124-7

Mitchell P. Epilogue: from energetic abstraction to biochemical mechanism. InSymp. Soc. Gen. Microbiol 1977 (Vol. 27, pp. 383-423).

WIKSTROM MKF. Proton pump coupled to cytochrome c oxidase in mitochondria. Nature [Internet]. Springer Nature; 1977 Mar;266(5599):271–3. Available from: https://doi.org/10.1038/266271a0

Hartmut M. Structure and Mechanism of Otto Warburg's Respiratory Enzyme, the Cytochrome c Oxidase. 2013.

Rich PR. A perspective on Peter Mitchell and the chemiosmotic theory. Journal of Bioenergetics and Biomembranes [Internet]. Springer Science and Business Media LLC; 2008 Oct;40(5):407–10. Available from: https://doi.org/10.1007/s10863-008-9173-7

Dubinskiĭ AIu. [A model of electron transport in chloroplasts taking into account the Mitchell Q-cycle. Calculation of J(e) and J(H) fluxes in steady state]. Biofizika. 2002 May-Jun;47(3):482-9.

Mitchell P. The protonmotive Q cycle: A general formulation. FEBS Letters [Internet]. Wiley; 1975 Nov 15;59(2):137–9. Available from: https://doi.org/10.1016/0014-5793(75)80359-0

Trumpower BL. The protonmotive Q cycle. Energy transduction by coupling of proton translocation to electron transfer by the cytochrome bc1 complex. J Biol Chem. 1990 Jul 15;265(20):11409-12.

Trumpower BL. Cytochrome bc1 complexes of microorganisms. Microbiol Rev. 1990 Jun;54(2):101-29.

Meinhardt SW, Yang XH, Trumpower BL, Ohnishi T. Identification of a stable ubisemiquinone and characterization of the effects of ubiquinone oxidation-reduction status on the Rieske iron-sulfur protein in the three-subunit ubiquinol-cytochrome c oxidoreductase complex of Paracoccus denitrificans. Journal of Biological Chemistry. 1987 Jun 25;262(18):8702-6.

Trumpower BL. The protonmotive Q cycle. Energy transduction by coupling of proton translocation to electron transfer by the cytochrome bc1 complex. J Biol Chem. 1990 Jul 15;265(20):11409-12.

Trumpower BL. Cytochrome bc1 complexes of microorganisms. Microbiol Rev. 1990 Jun;54(2):101-29.

Meinhardt SW, Ohnishi T. Determination of the position of the Qi− quinone binding from the protein surface of the cytochrome bc1 complex in Rhodobacter capsulates chromatophores. Biochimica et Biophysica Acta (BBA) - Bioenergetics [Internet]. Elsevier BV; 1992 Apr;1100(1):67–74. Available from: https://doi.org/10.1016/0005-2728(92)90127-n

West IC, Mitchell P, Rich PR. Electron conduction between b cytochromes of the mitochondrial respiratory chain in the presence of antimycin plus myxothiazol. Biochimica et Biophysica Acta (BBA) - Bioenergetics [Internet]. Elsevier BV; 1988 Mar;933(1):35–41. Available from: https://doi.org/10.1016/0005-2728(88)90053-9

T'sai A, Olson JS, Palmer G. The oxidation of yeast Complex III. Evidence for a very rapid electron equilibration between cytochrome c1 and the iron-sulfur center. J Biol Chem. 1983 Feb 25;258(4):2122-5.

Tsai A-L, Kauten R, Palmer G. Redox changes in coenzyme Q in the millisecond time range: An approach using rapid quenching and high-performance liquid chromatography. Analytical Biochemistry [Internet]. Elsevier BV; 1985 Nov;151(1):131–6. Available from: https://doi.org/10.1016/0003-2697(85)90062-4

Sitko SP, Mkrtchyan LN. Vvedenie v kvantovuyu medicinu (Introduction to quantum medicine). Kiev: Pattern; 1994. (In Russian)

Ermakov VN, Ponezha EA. Q-cikl Mitchella kak vozmozhnyj obekt vozdejstviya mikrovolnovogo izlucheniya na biologicheskie sistemy (Mitchell's Q-cycle as a possible object of biological effects of microwave radiation). Donetsk; 2000. (In Russian)

Eryomenko AA, Brizhik LS. Regulyaciya metabolicheskogo transporta zaryadov samoinducirovannym i vneshnim mikrovolnovym izlucheniem (Regulation of metabolic charge transport by self-induced and external microwave radiation). Donetsk; 2000. (In Russian)

Russell JS. Report on Waves. – Report of the fourteenth meeting of the British Association for the Advancement of Science, York, September 1844 (London 1845):311–90, Plates XLVII–LVII.

Russell JS. Report of the committee on waves. Report of the 7th Meeting of British Association for the Advancement of Science, John Murray, London, 1838:417–96.

Ablovic M, Sigur H. Solitony i metod obratnoj zadachi (Solitons and the inverse problem method). Moscow: Mir; 1987. (In Russian)

Zabusky NJ, Kruskal MD. Interaction of “Solitons” in a Collisionless Plasma and the Recurrence of Initial States. Physical Review Letters [Internet]. American Physical Society (APS); 1965 Aug 9;15(6):240–3. Available from: https://doi.org/10.1103/physrevlett.15.240

Kokobelyan AR, Zigmantovich YM. Sindrom diabeticheskoj stopy iateroskleroz nizhnih konechnostej (Diabetic foot syndrome and atherosclerosis of the lower extremities). Vol. 3. Saint Petersburg; 2006. (In Russian)

Ragino YL, Malyutina SK. Okislennye lipoproteidy nizkoj plotnosti i ih associacii s nekotorymi faktorami riska ateroskleroza v populyacii muzhchin Novosibirska ( Oxidized low-density lipoproteins and their association with certain risk factors for atherosclerosis in the Novosibirsk male population). Kardiologiya. 2005;45(10):39–44. (In Russian)

Bratus VV, Talaeva TV. Vospalenie kak patogeneticheskaya osnova ateroskleroza (Inflammation as a pathogenetic basis of atherosclerosis). Ukrayinskij kardiologichnij zhurnal. 2007;1:90–6. (In Russian)

Shilkina NP, Dryazhenkova IV. Sistemnye vaskulity i ateroskleroz (Systemic vasculitis and atherosclerosis). Terapevticheskij arhiv. 2007;79(3):84–92. (In Russian)

Talayeva TV, Ambroskina VV, Kryachok TA. Sistemnij harakter porushen obminu lipoproteyiniv krovi yak osnova patogenezu aterosklerozu (The systemic nature of the parasite lopoproteins is the basis for the pathogenesis of atherosclerosis). Zhurnal Akademiyi medichnih nauk Ukrayini. 2007;13(1):45–9. (In Ukrainian)

Bratus VV, Talayeva TV, Ambroskina VV. Sistemnij harakter porushen metabolizmu, aktivnosti zapalennya, oksidantnogo stresu ta aterogennosti plazmi u hvorih na ishemichnu hvorobu sercya (The systemic nature of the parasite is metabolism, activity of inflammation, oxidative stress, and plasma atherogenicity in diseases of the heart disease). Ukrayinskij kardiologichnij zhurnal. 2007;3:8–18. (In Ukrainian)

Orlova NN, Mhitaryan LS, Evstatova IN. Osobennosti svobodnoradikalnoj modifikacii belkov krovi i apoproteinov aterogennyh lipoproteidov v usloviyah koronarnogo ateroskleroza (Features of free radical modification of blood proteins and apoproteins of atherogenic lipoproteins in conditions of coronary atherosclerosis). Ukrayinskij kardiologichnij zhurnal. 2005;6:122–5. (In Russian)

Petuhova SV, Denisova DV, Ragina YL. Uroven produktov perekisnogo okisleniya lipidov v lipoproteidah nizkoj plotnosti u podrostkov s giperholesterinemiej i ih roditelej (The level of lipid peroxidation products in low-density lipoproteins in adolescents with hypercholesterolemia and their parents). Pediatriya. 2005;2:27–33. (In Russian)

Antonova KV, Nedosugova LV, Balabolkin MI. Vliyanie kompensacii uglevodnogo obmena na svobodnoradikalnoe okislenie lipoproteidov nizkoj plotnosti i aktivnost fermentativnoj antioksidantnoj sistemy pri saharnom diabete II tipa (The effect of carbohydrate metabolism compensation on the free radical oxidation of low-density lipoproteins and the activity of the enzymatic antioxidant system in diabetes mellitus type II). Problemy endokrinologii. 2003;49(2):51–4. (In Russian)

Gorbachev VV, Mrochek AG. Ateroskleroz (Atherosclerosis). Moscow: Knizhnyj Dom; 2005. (In Russian)

Zhdanov VS, Vihert AM, Sternbi NG. Evolyuciya i patologiya ateroskleroza u cheloveka (Evolution and pathology of atherosclerosis in humans). Moscow: Triada-H; 2002. (In Russian)

Dadvani SA, Syrkin AL, Azizova OA. Okislyaemost lipidov plazmy u bolnyh ishemicheskoj boleznyu serdca i obliteriruyushim aterosklerozom arterij nizhnih konechnostej (Plasma lipid oxidation in patients with ischemic heart disease and atherosclerosis obliterans of the lower limb arteries). Kardiologiya. 2005;45(4):55–60. (In Russian)

Jolly SR, Kane WJ, Bailie MB, Abrams GD, Lucchesi BR. Canine myocardial reperfusion injury. Its reduction by the combined administration of superoxide dismutase and catalase. Circulation Research [Internet]. Ovid Technologies (Wolters Kluwer Health); 1984 Mar;54(3):277–85. Available from: https://doi.org/10.1161/01.res.54.3.277

Kravchenko NA, Yarmish NV. Biohimicheskie i molekulyarno-geneticheskie mehanizmy regulyacii sinteza oksida azota endotelialnoj NO-sintazoj v norme i pri serdechno-sosudistoj patologii (Biochemical and molecular genetic mechanisms of regulation of the synthesis of nitric oxide by endothelial NO-synthase in normal and cardiovascular pathology). Ukrayinskij terapevtichnij zhurnal. 2007;(1):82–9. (In Russian)

Xia Y, Roman LJ, Masters BSS, Zweier JL. Inducible Nitric-oxide Synthase Generates Superoxide from the Reductase Domain. Journal of Biological Chemistry [Internet]. American Society for Biochemistry & Molecular Biology (ASBMB); 1998 Aug 28;273(35):22635–9. Available from: https://doi.org/10.1074/jbc.273.35.22635

Xia Y, Zweier JL. Superoxide and peroxynitrite generation from inducible nitric oxide synthase in macrophages. Proceedings of the National Academy of Sciences [Internet]. Proceedings of the National Academy of Sciences; 1997 Jun 24;94(13):6954–8. Available from: https://doi.org/10.1073/pnas.94.13.6954

Silverton SF, Mesaros S, Markham GD, Malinski T. Osteoclast radical interactions: NADPH causes pulsatile release of NO and stimulates superoxide production. Endocrinology [Internet]. The Endocrine Society; 1995 Nov;136(11):5244–7. Available from: https://doi.org/10.1210/endo.136.11.7588266

Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proceedings of the National Academy of Sciences [Internet]. Proceedings of the National Academy of Sciences; 1990 Feb 1;87(4):1620–4. Available from: https://doi.org/10.1073/pnas.87.4.1620

Peltola V, Huhtaniemi I, Metsa-Ketela T, Ahotupa M. Induction of lipid peroxidation during steroidogenesis in the rat testis. Endocrinology [Internet]. The Endocrine Society; 1996 Jan;137(1):105–12. Available from: https://doi.org/10.1210/endo.137.1.8536600

Bello BD, Paolicchi A, Comporti M, Pompella A, Maellaro E. Hydrogen peroxide produced during γ-glutamyl transpeptidase activity is involved in prevention of apoptosis and maintainance of proliferation in U937 cells. The FASEB Journal [Internet]. FASEB; 1999 Jan;13(1):69–79. Available from: https://doi.org/10.1096/fasebj.13.1.69

LINNETT J. Formation and trapping of free radicals [Internet]. Elsevier BV; 1960 Oct;19(76):231. Available from: https://doi.org/10.1016/0160-9327(60)90090-9

Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine. Fifth Edition. Oxford University Press; 2015.

McCord JM, Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969 Nov 25;244(22):6049-55.

Voejkov VL. Klyuchevaya rol aktivnogo kisloroda v vozniknovenii, stanovlenii i osushestvlenii zhiznedeyatelnosti (The key role of active oxygen in the occurrence, formation and implementation of life). Moscow: Moscow State University M.Yu. Lomonosova; (In Russian)

Vladimirov YuA, Archakov AI. Lipid peroxide oxidation in biological membranes. Nauka: Moscow; 1972.

Voejkov VL. Regulyatornye funkcii aktivnyh form kisloroda v krovi i v vodnyh modelnyh sistemah (Regulatory functions of reactive oxygen species in the blood and in aquatic model systems). Moscow: Moscow State University M.Yu. Lomonosova; (In Russian)

Koldunov VV, Kononov DS, Voejkov VL. Sistemnye svojstva hemilyuminescentnoj himiko-fizicheskoj reakcii mezhdu saharami i aminokislotami v vodnoj srede (Systemic properties of the chemiluminescent chemical-physical reaction between sugars and amino acids in the aquatic environment). Moscow: Moscow State University M.Yu. Lomonosova; (In Russian)

Voejkov VL. Voda s aktivnym kislorodom – voda zhizni (Water with active oxygen is the water of life). Moscow: Delfis; 2005. (In Russian)

Bacchiocchi C, Zannoni C. Energy transfer in condensed systems The effect of phase organization. Chemical Physics Letters [Internet]. Elsevier BV; 1997 Apr;268(5-6):541–8. Available from: https://doi.org/10.1016/s0009-2614(97)00215-7

Ultraweak luminescence in biology. Transaction of the Moscow Society of Naturalists; XXXIXX. Editor-in-Chief A.I. Zhuravlev, Nauka: Moscow, 1972.

Cambell AC. Chemiluminescence. Principles and Applications in Bi-ology and Medicine. Ellis Horwood Ltd., Chichester; 1988.

Baskov IV, Voejkov VL. Rol elektronnovozbuzhdyonnyh sostoyanij v biohimicheskih processah (The role of electron-excited states in biochemical processes). Biohimiya. 1996;61:1169–81. (In Russian)

Belousov LV, Voejkov VL, Popp FA. Mitogeneticheskie luchi Gurvicha (Mitogenetic rays of Gurvich). Priroda. 1997;3:64–80. (In Russian)

Shnol SE. Obshie problemy fiziko-himicheskoj biologii (General problems of physico-chemical biology). Moscow: Viniti; 1985. (In Russian)

Weathering KI. K biologicheskim osnovam “stressa” i “adaptacionnogo sindroma” (To the biological basis of “stress” and “adaptation syndrome”). Aktualnye problemy stressa. 1976;:211–29. (In Russian)

Gurvich AG, Gurvich LD. Mitogeneticheskoe izluchenie, fiziko-himicheskie osnovy i prilozheniya v biologii i medicine (Mitogenetic radiation, physical and chemical bases and applications in biology and medicine). Moscow; 1945. (In Russian)

Tuosi M, Hasan M. Gomeopatiya – biofizicheskaya tochka zreniya (Homeopathy - a biophysical point of view). Vestnik biofizicheskoj mediciny. 1996;(1):3–18. (In Russian)

Chirkova EN, Babaev YN. Volnovaya priroda informacii v zhivoj materii (The wave nature of information in living matter). Magnitobiologiya. 1992;4:31–8. (In Russian)

Chirkova EN, Babaev YN. Elektromagnitnaya priroda immuniteta (Electromagnetic nature of immunity). Sovremennye problemy izucheniya i sohraneniya biosfery. 1992;15(2):142–54. (In Russian)

Manasyan KA. Adaptivity of receptive fields of neurons in the posterotemporal cortex and their sensitivity to parameters of light stimulation in cats. Neuroscience and Behavioral Physiology [Internet]. Springer Science and Business Media LLC; 1988 Jan;18(1):43–9. Available from: https://doi.org/10.1007/bf01186904

Paradiso MA. Visual neuroscience: Illuminating the dark corners. Current Biology [Internet]. Elsevier BV; 2000 Jan;10(1):R15–R18. Available from: https://doi.org/10.1016/s0960-9822(99)00249-3

Sekuler AB, Bennett PJ. Visual neuroscience: Resonating to natural images. Current Biology [Internet]. Elsevier BV; 2001 Sep;11(18):R733–R736. Available from: https://doi.org/10.1016/s0960-9822(01)00433-x

Duhamel J-R. Multisensory Integration in Cortex. Neuron [Internet]. Elsevier BV; 2002 May;34(4):493–5. Available from: https://doi.org/10.1016/s0896-6273(02)00709-2

Beauchamp MS. See me, hear me, touch me: multisensory integration in lateral occipital-temporal cortex. Current Opinion in Neurobiology [Internet]. Elsevier BV; 2005 Apr;15(2):145–53. Available from: https://doi.org/10.1016/j.conb.2005.03.011

Dinstein I, Thomas C, Behrmann M, Heeger DJ. A mirror up to nature. Current Biology [Internet]. Elsevier BV; 2008 Jan;18(1):R13–R18. Available from: https://doi.org/10.1016/j.cub.2007.11.004

Dinstein I, Thomas C, Behrmann M, Heeger DJ. A mirror up to nature. Current Biology [Internet]. Elsevier BV; 2008 Jan;18(1):R13–R18. Available from: https://doi.org/10.1016/j.cub.2007.11.004

Kilner JM, Frith CD. Action Observation: Inferring Intentions without Mirror Neurons. Current Biology [Internet]. Elsevier BV; 2008 Jan;18(1):R32–R33. Available from: https://doi.org/10.1016/j.cub.2007.11.008

Wall MB, Lingnau A, Ashida H, Smith AT. Selective visual responses to expansion and rotation in the human MT complex revealed by functional magnetic resonance imaging adaptation. European Journal of Neuroscience [Internet]. Wiley; 2008 May;27(10):2747–57. Available from: https://doi.org/10.1111/j.1460-9568.2008.06249.x

Becker HGT, Erb M, Haarmeier T. Differential dependency on motion coherence in subregions of the human MT+ complex. European Journal of Neuroscience [Internet]. Wiley; 2008 Oct;28(8):1674–85. Available from: https://doi.org/10.1111/j.1460-9568.2008.06457.x

Kolster H, Peeters R, Orban GA. The Retinotopic Organization of the Human Middle Temporal Area MT/V5 and Its Cortical Neighbors. Journal of Neuroscience [Internet]. Society for Neuroscience; 2010 Jul 21;30(29):9801–20. Available from: https://doi.org/10.1523/jneurosci.2069-10.2010

Hodorov BI. Problemy vozbudimosti (Problems of excitability). Saint Petersburg; 1969. (In Russian)

Sudakov KV. Fiziologiya (Physiology). Moscow: Meditsina; 2000. (In Russian)

Styopin VS. Novaya filosofskaya enciklopediya (New philosophical encyclopedia). Moscow: Mysl; 2010. (In Russian)

Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nature Reviews Neuroscience [Internet]. Springer Science and Business Media LLC; 2008 Jul;9(7):557–68. Available from: https://doi.org/10.1038/nrn2402

Braitenberg V. Cell Assemblies in the Cerebral Cortex. Lecture Notes in Biomathematics [Internet]. Springer Berlin Heidelberg; 1978;171–88. Available from: https://doi.org/10.1007/978-3-642-93083-6_9

Braitenberg V. Brain size and number of neurons: an exercise in synthetic neuroanatomy. J Comput Neurosci. 2001 Jan-Feb;10(1):71-7.

Kreitzer A. Retrograde signaling by endocannabinoids. Current Opinion in Neurobiology [Internet]. Elsevier BV; 2002 Jun 1;12(3):324–30. Available from: https://doi.org/10.1016/s0959-4388(02)00328-8

Castillo PE, Younts TJ, Chávez AE, Hashimotodani Y. Endocannabinoid Signaling and Synaptic Function. Neuron [Internet]. Elsevier BV; 2012 Oct;76(1):70–81. Available from: https://doi.org/10.1016/j.neuron.2012.09.020

Iremonger KJ, Wamsteeker Cusulin JI, Bains JS. Changing the tune: plasticity and adaptation of retrograde signals. Trends in Neurosciences [Internet]. Elsevier BV; 2013 Aug;36(8):471–9. Available from: https://doi.org/10.1016/j.tins.2013.04.007

Ohno-Shosaku T, Kano M. Endocannabinoid-mediated retrograde modulation of synaptic transmission. Current Opinion in Neurobiology [Internet]. Elsevier BV; 2014 Dec;29:1–8. Available from: https://doi.org/10.1016/j.conb.2014.03.017

Tomas-Roig J, Piscitelli F, Gil V, del Río JA, Moore TP, Agbemenyah H, et al. Social defeat leads to changes in the endocannabinoid system: An overexpression of calreticulin and motor impairment in mice. Behavioural Brain Research [Internet]. Elsevier BV; 2016 Apr;303:34–43. Available from: https://doi.org/10.1016/j.bbr.2016.01.036

Bukalo O, Lee PR, Fields RD. BDNF mRNA abundance regulated by antidromic action potentials and AP-LTD in hippocampus. Neuroscience Letters [Internet]. Elsevier BV; 2016 Dec;635:97–102. Available from: https://doi.org/10.1016/j.neulet.2016.10.023

Buzsáki G, Anastassiou CA, Koch C. The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes. Nature Reviews Neuroscience [Internet]. Springer Science and Business Media LLC; 2012 May 18;13(6):407–20. Available from: https://doi.org/10.1038/nrn3241

Einevoll GT, Kayser C, Logothetis NK, Panzeri S. Modelling and analysis of local field potentials for studying the function of cortical circuits. Nature Reviews Neuroscience [Internet]. Springer Science and Business Media LLC; 2013 Oct 18;14(11):770–85. Available from: https://doi.org/10.1038/nrn3599

Braitenberg V. Thoughts on the cerebral cortex. Journal of Theoretical Biology [Internet]. Elsevier BV; 1974 Aug;46(2):421–47. Available from: https://doi.org/10.1016/0022-5193(74)90007-1

Braitenberg V, Schüz A. Cortex: Statistics and Geometry of Neuronal Connectivity. Springer Berlin Heidelberg; 1998; Available from: https://doi.org/10.1007/978-3-662-03733-1

Poirazi P, Mel BW. Impact of Active Dendrites and Structural Plasticity on the Memory Capacity of Neural Tissue. Neuron [Internet]. Elsevier BV; 2001 Mar;29(3):779–96. Available from: https://doi.org/10.1016/s0896-6273(01)00252-5

Mel BW. Information Processing in Dendritic Trees. Neural Computation [Internet]. MIT Press - Journals; 1994 Nov;6(6):1031–85. Available from: https://doi.org/10.1162/neco.1994.6.6.1031

Poirazi P, Brannon T, Mel BW. Pyramidal Neuron as Two-Layer Neural Network. Neuron [Internet]. Elsevier BV; 2003 Mar;37(6):989–99. Available from: https://doi.org/10.1016/s0896-6273(03)00149-1

Major G, Polsky A, Denk W, Schiller J, Tank DW. Spatiotemporally Graded NMDA Spike/Plateau Potentials in Basal Dendrites of Neocortical Pyramidal Neurons. Journal of Neurophysiology [Internet]. American Physiological Society; 2008 May;99(5):2584–601. Available from: https://doi.org/10.1152/jn.00011.2008

Katz Y, Menon V, Nicholson DA, Geinisman Y, Kath WL, Spruston N. Synapse Distribution Suggests a Two-Stage Model of Dendritic Integration in CA1 Pyramidal Neurons. Neuron [Internet]. Elsevier BV; 2009 Jul;63(2):171–7. Available from: https://doi.org/10.1016/j.neuron.2009.06.023

Branco T, Clark BA, Hausser M. Dendritic Discrimination of Temporal Input Sequences in Cortical Neurons. Science [Internet]. American Association for the Advancement of Science (AAAS); 2010 Aug 12;329(5999):1671–5. Available from: https://doi.org/10.1126/science.1189664

Taniguchi H, Lu J, Huang ZJ. The Spatial and Temporal Origin of Chandelier Cells in Mouse Neocortex. Science [Internet]. American Association for the Advancement of Science (AAAS); 2012 Nov 22;339(6115):70–4. Available from: https://doi.org/10.1126/science.1227622

Boldog E, Bakken TE, Hodge RD, Novotny M, Aevermann BD, Baka J, et al. Transcriptomic and morphophysiological evidence for a specialized human cortical GABAergic cell type. Nature Neuroscience [Internet]. Springer Nature; 2018 Aug 27;21(9):1185–95. Available from: https://doi.org/10.1038/s41593-018-0205-2

Luo C, Keown CL, Kurihara L, Zhou J, He Y, Li J, et al. Single-cell methylomes identify neuronal subtypes and regulatory elements in mammalian cortex. Science [Internet]. American Association for the Advancement of Science (AAAS); 2017 Aug 10;357(6351):600–4. Available from: https://doi.org/10.1126/science.aan3351

Foust A, Popovic M, Zecevic D, McCormick DA. Action Potentials Initiate in the Axon Initial Segment and Propagate through Axon Collaterals Reliably in Cerebellar Purkinje Neurons. Journal of Neuroscience [Internet]. Society for Neuroscience; 2010 May 19;30(20):6891–902. Available from: https://doi.org/10.1523/jneurosci.0552-10.2010

Kole MHP, Ilschner SU, Kampa BM, Williams SR, Ruben PC, Stuart GJ. Action potential generation requires a high sodium channel density in the axon initial segment. Nature Neuroscience [Internet]. Springer Nature; 2008 Jan 20;11(2):178–86. Available from: https://doi.org/10.1038/nn2040

Bereshpolova Y, Amitai Y, Gusev AG, Stoelzel CR, Swadlow HA. Dendritic Backpropagation and the State of the Awake Neocortex. Journal of Neuroscience [Internet]. Society for Neuroscience; 2007 Aug 29;27(35):9392–9. Available from: https://doi.org/10.1523/jneurosci.2218-07.2007

Fiala JC, Harris KM. Dendrites/ G. Stuart, N. Spruston, M. Häusser (eds.). – Oxford: Oxford Press; 1999:1–34.

Xiong W, Chen WR. Dynamic Gating of Spike Propagation in the Mitral Cell Lateral Dendrites. Neuron [Internet]. Elsevier BV; 2002 Mar;34(1):115–26. Available from: https://doi.org/10.1016/s0896-6273(02)00628-1

Oesch N, Euler T, Taylor WR. Direction-Selective Dendritic Action Potentials in Rabbit Retina. Neuron [Internet]. Elsevier BV; 2005 Sep;47(5):739–50. Available from: https://doi.org/10.1016/j.neuron.2005.06.036

Schiller J, Schiller Y. NMDA receptor-mediated dendritic spikes and coincident signal amplification. Current Opinion in Neurobiology [Internet]. Elsevier BV; 2001 Jun;11(3):343–8. Available from: https://doi.org/10.1016/s0959-4388(00)00217-8

Major G, Larkum ME, Schiller J. Active Properties of Neocortical Pyramidal Neuron Dendrites. Annual Review of Neuroscience [Internet]. Annual Reviews; 2013 Jul 8;36(1):1–24. Available from: https://doi.org/10.1146/annurev-neuro-062111-150343

Johnston D, Magee JC, Colbert CM, Christie BR. Active Properties of Neuronal Dendrites. Annual Review of Neuroscience [Internet]. Annual Reviews; 1996 Mar;19(1):165–86. Available from: https://doi.org/10.1146/annurev.ne.19.030196.001121

Reyes A. Influence of Dendritic Conductances on the Input-Output Properties of Neurons. Annual Review of Neuroscience [Internet]. Annual Reviews; 2001 Mar;24(1):653–75. Available from: https://doi.org/10.1146/annurev.neuro.24.1.653

Schoepp DD. Where will new neuroscience therapies come from? Nature Reviews Drug Discovery [Internet]. Springer Nature; 2011 Sep 30;10(10):715–6. Available from: https://doi.org/10.1038/nrd3559

Larkum ME, Nevian T. Synaptic clustering by dendritic signalling mechanisms. Current Opinion in Neurobiology [Internet]. Elsevier BV; 2008 Jun;18(3):321–31. Available from: https://doi.org/10.1016/j.conb.2008.08.013

Chen WR. Forward and Backward Propagation of Dendritic Impulses and Their Synaptic Control in Mitral Cells. Science [Internet]. American Association for the Advancement of Science (AAAS); 1997 Oct 17;278(5337):463–7. Available from: https://doi.org/10.1126/science.278.5337.463

Häusser M, Stuart G, Racca C, Sakmann B. Axonal initiation and active dendritic propagation of action potentials in substantia nigra neurons. Neuron [Internet]. Elsevier BV; 1995 Sep;15(3):637–47. Available from: https://doi.org/10.1016/0896-6273(95)90152-3

Martina M. Distal Initiation and Active Propagation of Action Potentials in Interneuron Dendrites. Science [Internet]. American Association for the Advancement of Science (AAAS); 2000 Jan 14;287(5451):295–300. Available from: https://doi.org/10.1126/science.287.5451.295

Stuart G, Schiller J, Sakmann B. Action potential initiation and propagation in rat neocortical pyramidal neurons. The Journal of Physiology [Internet]. Wiley; 1997 Dec;505(3):617–32. Available from: https://doi.org/10.1111/j.1469-7793.1997.617ba.x

Schiller J, Schiller Y, Stuart G, Sakmann B. Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons. The Journal of Physiology [Internet]. Wiley; 1997 Dec;505(3):605–16. Available from: https://doi.org/10.1111/j.1469-7793.1997.605ba.x

Golding NL, Spruston N. Dendritic Sodium Spikes Are Variable Triggers of Axonal Action Potentials in Hippocampal CA1 Pyramidal Neurons. Neuron [Internet]. Elsevier BV; 1998 Nov;21(5):1189–200. Available from: https://doi.org/10.1016/s0896-6273(00)80635-2

Fatt P. ELECTRIC potentials occurring around a neurone during its antidromic activation. Journal of Neurophysiology [Internet]. American Physiological Society; 1957 Jan;20(1):27–60. Available from: https://doi.org/10.1152/jn.1957.20.1.27

Andersen P. Interhippocampal Impulses. Acta Physiologica Scandinavica [Internet]. Wiley; 1960 Apr;48(2):178–208. Available from: https://doi.org/10.1111/j.1748-1716.1960.tb01856.x

Cragg BG, Hamlyn LH. Action potentials of the pyramidal neurones in the hippocampus of the rabbit. The Journal of Physiology [Internet]. Wiley; 1955 Sep 28;129(3):608–27. Available from: https://doi.org/10.1113/jphysiol.1955.sp005382

Fujita Y, Sakata H. Electrophysiological properties of ca1 and ca2 apical dendrites of rabbit hippocampus. Journal of Neurophysiology [Internet]. American Physiological Society; 1962 Mar;25(2):209–22. Available from: https://doi.org/10.1152/jn.1962.25.2.209

Wong RK, Prince DA, Basbaum AI. Intradendritic recordings from hippocampal neurons. Proceedings of the National Academy of Sciences [Internet]. Proceedings of the National Academy of Sciences; 1979 Feb 1;76(2):986–90. Available from: https://doi.org/10.1073/pnas.76.2.986

Pinault D. Backpropagation of action potentials generated at ectopic axonal loci: hypothesis that axon terminals integrate local environmental signals. Brain Research Reviews [Internet]. Elsevier BV; 1995 Jul;21(1):42–92. Available from: https://doi.org/10.1016/0165-0173(95)00004-m

Shu Y, Hasenstaub A, Duque A, Yu Y, McCormick DA. Modulation of intracortical synaptic potentials by presynaptic somatic membrane potential. Nature [Internet]. Springer Nature; 2006 Apr 12;441(7094):761–5. Available from: https://doi.org/10.1038/nature04720

Nevian T, Larkum ME, Polsky A, Schiller J. Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp recording study. Nature Neuroscience [Internet]. Springer Nature; 2007 Jan 7;10(2):206–14. Available from: https://doi.org/10.1038/nn1826

Shu Y, Duque A, Yu Y, Haider B, McCormick DA. Properties of Action-Potential Initiation in Neocortical Pyramidal Cells: Evidence From Whole Cell Axon Recordings. Journal of Neurophysiology [Internet]. American Physiological Society; 2007 Jan;97(1):746–60. Available from: https://doi.org/10.1152/jn.00922.2006

Shu Y. Neuronal signaling in central nervous system. Sheng Li Xue Bao. 2011 Feb 25;63(1):1-8.

Shepherd GM. Creating Modern Neuroscience: The Revolutionary 1950s. Oxford University Press; 2009.

Chang H-T. Dendritic potential of cortical neurons produced by direct electrical stimulation of the cerebral cortex. Journal of Neurophysiology [Internet]. American Physiological Society; 1951 Jan;14(1):1–21. Available from: https://doi.org/10.1152/jn.1951.14.1.1

Chang H-T. Cortical neurons with particular reference to the apical dendrites. Cold Spring Harbor Symposia on Quantitative Biology [Internet]. Cold Spring Harbor Laboratory; 1952 Jan 1;17(0):189–202. Available from: https://doi.org/10.1101/sqb.1952.017.01.019

Häusser M, Stuart G, Racca C, Sakmann B. Axonal initiation and active dendritic propagation of action potentials in substantia nigra neurons. Neuron [Internet]. Elsevier BV; 1995 Sep;15(3):637–47. Available from: https://doi.org/10.1016/0896-6273(95)90152-3

Stuart G, Schiller J, Sakmann B. Action potential initiation and propagation in rat neocortical pyramidal neurons. The Journal of Physiology [Internet]. Wiley; 1997 Dec;505(3):617–32. Available from: https://doi.org/10.1111/j.1469-7793.1997.617ba.x

Stuart GJ, Sakmann B. Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature [Internet]. Springer Nature; 1994 Jan;367(6458):69–72. Available from: https://doi.org/10.1038/367069a0

Lebedeva SA, Stepanyuk AR, Belan PV. Local Signalization in Dendrites and Mechanisms of Short-Term Memory. Neurophysiology [Internet]. Springer Science and Business Media LLC; 2013 Jul;45(4):359–67. Available from: https://doi.org/10.1007/s11062-013-9381-6

Cuntz H, Forstner F, Borst A, Häusser M. One Rule to Grow Them All: A General Theory of Neuronal Branching and Its Practical Application. Morrison A, editor. PLoS Computational Biology [Internet]. Public Library of Science (PLoS); 2010 Aug 5;6(8):e1000877. Available from: https://doi.org/10.1371/journal.pcbi.1000877

Schüz A, Palm G. Density of neurons and synapses in the cerebral cortex of the mouse. Journal of Comparative Neurology [Internet]. Wiley; 1989 Aug 22;286(4):442–55. Available from: https://doi.org/10.1002/cne.902860404

Kernell D, Zwaagstra B. Dendrites of cat's spinal motoneurones: relationship between stem diameter and predicted input conductance. J Physiol (Lond). 1989 Jun;413:255-69. Available from: https://doi.org/10.1113/jphysiol.1989.sp017652

Korzhevskyj DE. Teoreticheskie osnovy i prakticheskoe primenenie metodov immunogistohimii (Theoretical foundations and practical application of immunohistochemistry methods). Moscow; 2014. (In Russian)

Segev I. Cable and Compartmental Models of Dendritic Trees. The Book of GENESIS [Internet]. Springer New York; 1998;51–77. Available from: https://doi.org/10.1007/978-1-4612-1634-6_5

Hasselmo ME, Bergman RE. Review of Bower and Beeman: The Book of GENESIS: Exploring Realistic Neural Models with the GEneral NEural SImulation System. Biophysical Journal [Internet]. Elsevier BV; 1995 Nov;69(5):2174–5. Available from: https://doi.org/10.1016/s0006-3495(95)80092-5

Branco T, Clark BA, Hausser M. Dendritic Discrimination of Temporal Input Sequences in Cortical Neurons. Science [Internet]. American Association for the Advancement of Science (AAAS); 2010 Aug 12;329(5999):1671–5. Available from: https://doi.org/10.1126/science.1189664

Takahashi N, Kitamura K, Matsuo N, Mayford M, Kano M, Matsuki N, et al. Locally Synchronized Synaptic Inputs. Science [Internet]. American Association for the Advancement of Science (AAAS); 2012 Jan 19;335(6066):353–6. Available from: https://doi.org/10.1126/science.1210362

Smith SL, Smith IT, Branco T, Häusser M. Dendritic spikes enhance stimulus selectivity in cortical neurons in vivo. Nature [Internet]. Springer Science and Business Media LLC; 2013 Oct 27;503(7474):115–20. Available from: https://doi.org/10.1038/nature12600

Sivyer B, Williams SR. Direction selectivity is computed by active dendritic integration in retinal ganglion cells. Nature Neuroscience [Internet]. Springer Science and Business Media LLC; 2013 Oct 27;16(12):1848–56. Available from: https://doi.org/10.1038/nn.3565

Larkum M. A cellular mechanism for cortical associations: an organizing principle for the cerebral cortex. Trends in Neurosciences [Internet]. Elsevier BV; 2013 Mar;36(3):141–51. Available from: https://doi.org/10.1016/j.tins.2012.11.006

Agmon-Snir H, Carr CE, Rinzel J. The role of dendrites in auditory coincidence detection. Nature [Internet]. Springer Nature; 1998 May;393(6682):268–72. Available from: https://doi.org/10.1038/30505

Grienberger C, Adelsberger H, Stroh A, Milos R-I, Garaschuk O, Schierloh A, et al. Sound-evoked network calcium transients in mouse auditory cortexin vivo. The Journal of Physiology [Internet]. Wiley; 2012 Jan 3;590(4):899–918. Available from: https://doi.org/10.1113/jphysiol.2011.222513

García-López P, García-Marín V, Freire M. The discovery of dendritic spines by Cajal in 1888 and its relevance in the present neuroscience. Progress in Neurobiology [Internet]. Elsevier BV; 2007 Oct;83(2):110–30. Available from: https://doi.org/10.1016/j.pneurobio.2007.06.002

Peron SP, Jones PW, Gabbiani F. Precise Subcellular Input Retinotopy and Its Computational Consequences in an Identified Visual Interneuron. Neuron [Internet]. Elsevier BV; 2009 Sep;63(6):830–42. Available from: https://doi.org/10.1016/j.neuron.2009.09.010

Frankfurt M, Luine V. The evolving role of dendritic spines and memory: Interaction(s) with estradiol. Hormones and Behavior [Internet]. Elsevier BV; 2015 Aug;74:28–36. Available from: https://doi.org/10.1016/j.yhbeh.2015.05.004

Bosch M, Hayashi Y. Structural plasticity of dendritic spines. Current Opinion in Neurobiology [Internet]. Elsevier BV; 2012 Jun;22(3):383–8. Available from: https://doi.org/10.1016/j.conb.2011.09.002

Sholl DA. The Organization of the Cerebral Cortex. Hafner Publishing Company; 1956.

Chubarko AI. Normalnaya fiziologiya (Normal physiology). Minsk: Vyshejshaya shkola; 2013. (In Russian)

Chklovskii DB. Synaptic Connectivity and Neuronal Morphology. Neuron [Internet]. Elsevier BV; 2004 Sep;43(5):609–17. Available from: https://doi.org/10.1016/j.neuron.2004.08.012

Hammond C. Cellular and Molecular Neurobiology. – Academic Press, 2001.

Koch C, Zador A. The function of dendritic spines: devices subserving biochemical rather than electrical compartmentalization. The Journal of Neuroscience [Internet]. Society for Neuroscience; 1993 Feb 1;13(2):413–22. Available from: https://doi.org/10.1523/jneurosci.13-02-00413.1993

Knott G, Holtmaat A. Dendritic spine plasticity—Current understanding from in vivo studies. Brain Research Reviews [Internet]. Elsevier BV; 2008 Aug;58(2):282–9. Available from: https://doi.org/10.1016/j.brainresrev.2008.01.002

Popov VI, Medvedev NI, Rogachevsky VV. Tryohmernaya organizaciya sinapsov i astroglii v gippokampe krys i suslikov (Three-dimensional organization of synapses and astroglia in the hippocampus of rats and ground squirrels). Tryohmernaya organizaciya sinapsov i astroglii v gippokampe krys i suslikov (Three-dimensional organization of synapses and astroglia in the hippocampus of rats and ground squirrels). 2003;48(2):289–308. (In Russian)

Magee JC, Johnston D. Plasticity of dendritic function. Current Opinion in Neurobiology [Internet]. Elsevier BV; 2005 Jun;15(3):334–42. Available from: https://doi.org/10.1016/j.conb.2005.05.013

Savelev AV. Metodologiya sinapticheskoj samoorganizacii i problema distalnyh sinapsov nejronov (Methodology of synaptic self-organization and the problem of distal synapses of neurons). Zhurnal problem evolyucii otkrytyh sistem. 2006;8(2):96–104. (In Russian)

Krasnoshekova EI. Modulnaya organizaciya nervnyh centrov (The modular organization of the nerve centers). Saint Petersburg: SpbGU; 2007. (In Russian)

Sjöström PJ, Rancz EA, Roth A, Häusser M. Dendritic Excitability and Synaptic Plasticity. Physiological Reviews [Internet]. American Physiological Society; 2008 Apr;88(2):769–840. Available from: https://doi.org/10.1152/physrev.00016.2007

Kasai H, Fukuda M, Watanabe S, Hayashi-Takagi A, Noguchi J. Structural dynamics of dendritic spines in memory and cognition. Trends in Neurosciences [Internet]. Elsevier BV; 2010 Mar;33(3):121–9. Available from: https://doi.org/10.1016/j.tins.2010.01.001

Major G, Larkum ME, Schiller J. Active Properties of Neocortical Pyramidal Neuron Dendrites. Annual Review of Neuroscience [Internet]. Annual Reviews; 2013 Jul 8;36(1):1–24. Available from: https://doi.org/10.1146/annurev-neuro-062111-150343

Priel A, Tuszynski JA, Woolf NJ. Neural cytoskeleton capabilities for learning and memory. Journal of Biological Physics [Internet]. Springer Nature; 2009 May 15;36(1). Available from: https://doi.org/10.1007/s10867-009-9153-0

Yuste R, Bonhoeffer T. Morphological Changes in Dendritic Spines Associated with Long-Term Synaptic Plasticity. Annual Review of Neuroscience [Internet]. Annual Reviews; 2001 Mar;24(1):1071–89. Available from: https://doi.org/10.1146/annurev.neuro.24.1.1071

Hotulainen P, Hoogenraad CC. Actin in dendritic spines: connecting dynamics to function. The Journal of Cell Biology [Internet]. Rockefeller University Press; 2010 May 10;189(4):619–29. Available from: https://doi.org/10.1083/jcb.201003008

Matsuzaki M, Honkura N, Ellis-Davies GCR, Kasai H. Structural basis of long-term potentiation in single dendritic spines. Nature [Internet]. Springer Nature; 2004 Jun;429(6993):761–6. Available from: https://doi.org/10.1038/nature02617

Fischer M, Kaech S, Knutti D, Matus A. Rapid Actin-Based Plasticity in Dendritic Spines. Neuron [Internet]. Elsevier BV; 1998 May;20(5):847–54. Available from: https://doi.org/10.1016/s0896-6273(00)80467-5

Kasai H, Matsuzaki M, Noguchi J, Yasumatsu N, Nakahara H. Structure–stability–function relationships of dendritic spines. Trends in Neurosciences [Internet]. Elsevier BV; 2003 Jul;26(7):360–8. Available from: https://doi.org/10.1016/s0166-2236(03)00162-0

Segev I, Rall W. Computational study of an excitable dendritic spine. Journal of Neurophysiology [Internet]. American Physiological Society; 1988 Aug;60(2):499–523. Available from: https://doi.org/10.1152/jn.1988.60.2.499

Wickens J. Electrically coupled but chemically isolated synapses: Dendritic spines and calcium in a rule for synaptic modification. Progress in Neurobiology [Internet]. Elsevier BV; 1988 Jan;31(6):507–28. Available from: https://doi.org/10.1016/0301-0082(88)90013-5

Jaslove SW. The integrative properties of spiny distal dendrites. Neuroscience [Internet]. Elsevier BV; 1992 Apr;47(3):495–519. Available from: https://doi.org/10.1016/0306-4522(92)90161-t

Coss RG, Perkel DH. The function of dendritic spines: A review of theoretical issues. Behavioral and Neural Biology [Internet]. Elsevier BV; 1985 Sep;44(2):151–85. Available from: https://doi.org/10.1016/s0163-1047(85)90170-0

Harris K. Dendritic Spines: Cellular Specializations Imparting Both Stability and Flexibility to Synaptic Function. Annual Review of Neuroscience [Internet]. Annual Reviews; 1994 Jan 1;17(1):341–71. Available from: https://doi.org/10.1146/annurev.neuro.17.1.341

Chklovskii DB. Synaptic Connectivity and Neuronal Morphology. Neuron [Internet]. Elsevier BV; 2004 Sep;43(5):609–17. Available from: https://doi.org/10.1016/j.neuron.2004.08.012

Arbib MA. The Handbook of Brain Theory and Neural Networks. 2-nd Edition. Cambridge, Mass: MIT Press; 2003.

Holmes WR, Rall W. Dendritic Spines. Handbook of Brain Theory and Neural Networks. Mit Press; 2003.

Yang C, Seamans J. Dopamine D1 receptor actions in layers V-VI rat prefrontal cortex neurons in vitro: modulation of dendritic-somatic signal integration. The Journal of Neuroscience [Internet]. Society for Neuroscience; 1996 Mar 1;16(5):1922–35. Available from: https://doi.org/10.1523/jneurosci.16-05-01922.1996

Van Elburg RAJ, van Ooyen A. Impact of Dendritic Size and Dendritic Topology on Burst Firing in Pyramidal Cells. Graham LJ, editor. PLoS Computational Biology [Internet]. Public Library of Science (PLoS); 2010 May 13;6(5):e1000781. Available from: https://doi.org/10.1371/journal.pcbi.1000781

Vetter P, Roth A, Häusser M. Propagation of Action Potentials in Dendrites Depends on Dendritic Morphology. Journal of Neurophysiology [Internet]. American Physiological Society; 2001 Feb;85(2):926–37. Available from: https://doi.org/10.1152/jn.2001.85.2.926

Schaefer AT, Larkum ME, Sakmann B, Roth A. Coincidence Detection in Pyramidal Neurons Is Tuned by Their Dendritic Branching Pattern. Journal of Neurophysiology [Internet]. American Physiological Society; 2003 Jun;89(6):3143–54. Available from: https://doi.org/10.1152/jn.00046.2003

Mainen ZF, Sejnowski TJ. Influence of dendritic structure on firing pattern in model neocortical neurons. Nature [Internet]. Springer Nature; 1996 Jul;382(6589):363–6. Available from: https://doi.org/10.1038/382363a0

Van Ooyen A, Duijnhouwer J, Remme MWH, van Pelt J. The effect of dendritic topology on firing patterns in model neurons. Network: Computation in Neural Systems [Internet]. Informa UK Limited; 2002 Jan;13(3):311–25. Available from: https://doi.org/10.1088/0954-898x_13_3_304

Spruston N. Pyramidal neurons: dendritic structure and synaptic integration. Nature Reviews Neuroscience [Internet]. Springer Science and Business Media LLC; 2008 Mar;9(3):206–21. Available from: https://doi.org/10.1038/nrn2286

Chen J-Y. A Simulation Study Investigating the Impact of Dendritic Morphology and Synaptic Topology on Neuronal Firing Patterns. Neural Computation [Internet]. MIT Press - Journals; 2010 Apr;22(4):1086–111. Available from: https://doi.org/10.1162/neco.2009.11-08-913

Van Elburg RAJ, van Ooyen A. Impact of Dendritic Size and Dendritic Topology on Burst Firing in Pyramidal Cells. Graham LJ, editor. PLoS Computational Biology [Internet]. Public Library of Science (PLoS); 2010 May 13;6(5):e1000781. Available from: https://doi.org/10.1371/journal.pcbi.1000781

Bastian J, Nguyenkim J. Dendritic Modulation of Burst-Like Firing in Sensory Neurons. Journal of Neurophysiology [Internet]. American Physiological Society; 2001 Jan;85(1):10–22. Available from: https://doi.org/10.1152/jn.2001.85.1.10

Mehaffey WH, Ellis LD, Krahe R, Dunn RJ, Chacron MJ. Ionic and neuromodulatory regulation of burst discharge controls frequency tuning. Journal of Physiology-Paris [Internet]. Elsevier BV; 2008 Jul;102(4-6):195–208. Available from: https://doi.org/10.1016/j.jphysparis.2008.10.019

Byrne JH, Heidelberger R, Waxham MN, Byrne JH, Roberts JL, еd. From Molecules to Networks: An Introduction to Cellular and Molecular Neuroscience. 2nd Edition. Academic Press; 2009.

Spruston N. Pyramidal neurons: dendritic structure and synaptic integration. Nature Reviews Neuroscience [Internet]. Springer Science and Business Media LLC; 2008 Mar;9(3):206–21. Available from: https://doi.org/10.1038/nrn2286

Arbib MA. The Handbook of Brain Theory and Neural Networks: Second Edition. MIT Press, 2003:324–32.

Koch Ch. Biophysics of Computation: Information Processing in Single Neurons. Oxford University Press, 2004.

Peters A, Palay SL. The morphology of synapses. Journal of Neurocytology [Internet]. Springer Science and Business Media LLC; 1996 Jan;25(1):687–700. Available from: https://doi.org/10.1007/bf02284835

Schmitt R, Dev P, Smith B. Electrotonic processing of information by brain cells. Science [Internet]. American Association for the Advancement of Science (AAAS); 1976 Jul 9;193(4248):114–20. Available from: https://doi.org/10.1126/science.180598

Shu Y, Hasenstaub A, Duque A, Yu Y, McCormick DA. Modulation of intracortical synaptic potentials by presynaptic somatic membrane potential. Nature [Internet]. Springer Nature; 2006 Apr 12;441(7094):761–5. Available from: https://doi.org/10.1038/nature04720

Henderson Z, Morris NP, Grimwood P, Fiddler G, Yang HW, Appenteng K. Morphology of local axon collaterals of electrophysiologically characterised neurons in the rat medial septal/ diagonal band complex. J Comp Neurol. 2001 Feb 12;430(3):410-32.

Shu Y, Duque A, Yu Y, Haider B, McCormick DA. Properties of Action-Potential Initiation in Neocortical Pyramidal Cells: Evidence From Whole Cell Axon Recordings. Journal of Neurophysiology [Internet]. American Physiological Society; 2007 Jan;97(1):746–60. Available from: https://doi.org/10.1152/jn.00922.2006

Nevian T, Larkum ME, Polsky A, Schiller J. Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp recording study. Nature Neuroscience [Internet]. Springer Nature; 2007 Jan 7;10(2):206–14. Available from: https://doi.org/10.1038/nn1826

Larkum ME, Nevian T, Sandler M, Polsky A, Schiller J. Synaptic Integration in Tuft Dendrites of Layer 5 Pyramidal Neurons: A New Unifying Principle. Science [Internet]. American Association for the Advancement of Science (AAAS); 2009 Aug 6;325(5941):756–60. Available from: https://doi.org/10.1126/science.1171958

Meier C, Dermietzel R. Electrical Synapses – Gap Junctions in the Brain. Cell Communication in Nervous and Immune System [Internet]. Springer Berlin Heidelberg; 99–128. Available from: https://doi.org/10.1007/400_013

Fuxe K, Dahlström A, Höistad M, Marcellino D, Jansson A, Rivera A, et al. From the Golgi–Cajal mapping to the transmitter-based characterization of the neuronal networks leading to two modes of brain communication: Wiring and volume transmission. Brain Research Reviews [Internet]. Elsevier BV; 2007 Aug;55(1):17–54. Available from: https://doi.org/10.1016/j.brainresrev.2007.02.009

Fischer M, Kaech S, Knutti D, Matus A. Rapid Actin-Based Plasticity in Dendritic Spines. Neuron [Internet]. Elsevier BV; 1998 May;20(5):847–54. Available from: https://doi.org/10.1016/s0896-6273(00)80467-5

Purpura DP. Dendritic Spine “Dysgenesis” and Mental Retardation. Science [Internet]. American Association for the Advancement of Science (AAAS); 1974 Dec 20;186(4169):1126–8. Available from: https://doi.org/10.1126/science.186.4169.1126

Marin-Padilla M. Structural abnormalities of the cerebral cortex in human chromosomal aberrations: a Golgi study. Brain Research [Internet]. Elsevier BV; 1972 Sep;44(2):625–9. Available from: https://doi.org/10.1016/0006-8993(72)90324-1

Scheibel ME, Scheibel AB. Differential Changes with Aging in Old and New Cortices. The Aging Brain and Senile Dementia [Internet]. Springer US; 1977;39–58. Available from: https://doi.org/10.1007/978-1-4684-3093-6_4

Kaufmann WE. Dendritic Anomalies in Disorders Associated with Mental Retardation. Cerebral Cortex [Internet]. Oxford University Press (OUP); 2000 Oct 1;10(10):981–91. Available from: https://doi.org/10.1093/cercor/10.10.981

Dierssen M, Ramakers GJA. Dendritic pathology in mental retardation: from molecular genetics to neurobiology. Genes, Brain and Behavior [Internet]. Wiley; 2006 Jun;5:48–60. Available from: https://doi.org/10.1111/j.1601-183x.2006.00224.x

Zhang S, Wang J, Wang L. Structural plasticity of dendritic spines. Frontiers in Biology [Internet]. Springer Science and Business Media LLC; 2010 Jan 5;5(1):48–58. Available from: https://doi.org/10.1007/s11515-010-0011-z

Bennett MR. Schizophrenia: susceptibility genes, dendritic-spine pathology and gray matter loss. Progress in Neurobiology [Internet]. Elsevier BV; 2011 Nov;95(3):275–300. Available from: https://doi.org/10.1016/j.pneurobio.2011.08.003

Falke E, Nissanov J, Mitchell TW, Bennett DA, Trojanowski JQ, Arnold SE. Subicular dendritic arborization in Alzheimer's disease correlates with neurofibrillary tangle density. Am J Pathol. 2003 Oct;163(4):1615-21. Available from: https://doi.org/10.1016/s0002-9440(10)63518-3

Yu W, Lu B. Synapses and Dendritic Spines as Pathogenic Targets in Alzheimer’s Disease. Neural Plasticity [Internet]. Hindawi Limited; 2012;2012:1–8. Available from: https://doi.org/10.1155/2012/247150

Penzes P, Cahill ME, Jones KA, VanLeeuwen J-E, Woolfrey KM. Dendritic spine pathology in neuropsychiatric disorders. Nature Neuroscience [Internet]. Springer Nature; 2011 Feb 23;14(3):285–93. Available from: https://doi.org/10.1038/nn.2741

Morse TM, Carnevale NT, Mutalik PG, Migliore M, Shepherd GM. Abnormal Excitability of Oblique Dendrites Implicated in Early Alzheimer's: A Computational Study. Front Neural Circuits. 2010;4:16. Available from: https://doi.org/10.3389/fncir.2010.00016

Glausier JR, Lewis DA. Dendritic spine pathology in schizophrenia. Neuroscience [Internet]. Elsevier BV; 2013 Oct;251:90–107. Available from: https://doi.org/10.1016/j.neuroscience.2012.04.044

Ventura R, Harris KM. Three-dimensional relationships between hippocampal synapses and astrocytes. J Neurosci. 1999 Aug 15;19(16):6897-906.

Berger T, Müller T, Kettenmann H. Developmental regulation of ion channels and receptors on glial cells. Perspect Dev Neurobiol. 1995;2(4):347-56.

Condorelli DF, Conti F, Gallo V, Kirchhoff F, Seifert G, Steinhäuser C, et al. Expression and Functional Analysis of Glutamate Receptors in Glial Cells. The Functional Roles of Glial Cells in Health and Disease [Internet]. Springer US; 1999;49–67. Available from: https://doi.org/10.1007/978-1-4615-4685-6_5

v. Blankenfeld G, Kettenmann H. Glutamate and GABA receptors in vertebrate glial cells. Molecular Neurobiology [Internet]. Springer Science and Business Media LLC; 1991 Mar;5(1):31–43. Available from: https://doi.org/10.1007/bf02935611

Gilyarov MS. Nejrogliya. Biologicheskij enciklopedicheskij slovar (Neuroglia. Biological encyclopedic dictionary). 2nd ed. Moscow: Sov. Enciklopediya; 1986. (In Russian)

Çakιr T, Alsan S, Saybaşιlι H, Akιn A, Ülgen KÖ. Reconstruction and flux analysis of coupling between metabolic pathways of astrocytes and neurons: application to cerebral hypoxia. Theoretical Biology and Medical Modelling [Internet]. Springer Nature; 2007;4(1):48. Available from: https://doi.org/10.1186/1742-4682-4-48

Hayakawa K, Esposito E, Wang X, Terasaki Y, Liu Y, Xing C, et al. Transfer of mitochondria from astrocytes to neurons after stroke. Nature [Internet]. Springer Science and Business Media LLC; 2016 Jul;535(7613):551–5. Available from: https://doi.org/10.1038/nature18928

Singhvi A, Liu B, Friedman CJ, Fong J, Lu Y, Huang X-Y, et al. A Glial K/Cl Transporter Controls Neuronal Receptive Ending Shape by Chloride Inhibition of an rGC. Cell [Internet]. Elsevier BV; 2016 May;165(4):936–48. Available from: https://doi.org/10.1016/j.cell.2016.03.026

Wallace SW, Singhvi A, Liang Y, Lu Y, Shaham S. PROS-1/Prospero Is a Major Regulator of the Glia-Specific Secretome Controlling Sensory-Neuron Shape and Function in C. elegans. Cell Reports [Internet]. Elsevier BV; 2016 Apr;15(3):550–62. Available from: https://doi.org/10.1016/j.celrep.2016.03.051

Farhy-Tselnicker I, van Casteren ACM, Lee A, Chang VT, Aricescu AR, Allen NJ. Astrocyte-Secreted Glypican 4 Regulates Release of Neuronal Pentraxin 1 from Axons to Induce Functional Synapse Formation. Neuron [Internet]. Elsevier BV; 2017 Oct;96(2):428–445.e13. Available from: https://doi.org/10.1016/j.neuron.2017.09.053

Dickens AM, Tovar-y-Romo LB, Yoo S-W, Trout AL, Bae M, Kanmogne M, et al. Astrocyte-shed extracellular vesicles regulate the peripheral leukocyte response to inflammatory brain lesions. Science Signaling [Internet]. American Association for the Advancement of Science (AAAS); 2017 Apr 4;10(473):eaai7696. Available from: https://doi.org/10.1126/scisignal.aai7696

Lee HS, Ghetti A, Pinto-Duarte A, Wang X, Dziewczapolski G, Galimi F, et al. Astrocytes contribute to gamma oscillations and recognition memory. Proceedings of the National Academy of Sciences [Internet]. Proceedings of the National Academy of Sciences; 2014 Jul 28;111(32):E3343–E3352. Available from: https://doi.org/10.1073/pnas.1410893111

Sohal VS, Zhang F, Yizhar O, Deisseroth K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature [Internet]. Springer Science and Business Media LLC; 2009 Apr 26;459(7247):698–702. Available from: https://doi.org/10.1038/nature07991

Tso CF, Simon T, Greenlaw AC, Puri T, Mieda M, Herzog ED. Astrocytes Regulate Daily Rhythms in the Suprachiasmatic Nucleus and Behavior. Current Biology [Internet]. Elsevier BV; 2017 Apr;27(7):1055–61. Available from: https://doi.org/10.1016/j.cub.2017.02.037

Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, et al. Synaptic Pruning by Microglia Is Necessary for Normal Brain Development. Science [Internet]. American Association for the Advancement of Science (AAAS); 2011 Jul 21;333(6048):1456–8. Available from: https://doi.org/10.1126/science.1202529

Biber K, Möller T, Boddeke E, Prinz M. Central nervous system myeloid cells as drug targets: current status and translational challenges. Nature Reviews Drug Discovery [Internet]. Springer Nature; 2015 Dec 4;15(2):110–24. Available from: https://doi.org/10.1038/nrd.2015.14

Roitbak AI, Fanardjian VV. Depolarization of cortical glial cells in response to electrical stimulation of the cortical surface. Neuroscience [Internet]. Elsevier BV; 1981 Dec;6(12):2529–37. Available from: https://doi.org/10.1016/0306-4522(81)90098-1

Roitbak AI. Cortical Slow Potentials, Depolarization of Glial Cells, and Extracellular Potassium Concentration. Slow Potential Changes in the Brain [Internet]. Birkhäuser Boston; 1993;169–78. Available from: https://doi.org/10.1007/978-1-4757-1379-4_15

Porter JT, McCarthy KD. Hippocampal AstrocytesIn SituRespond to Glutamate Released from Synaptic Terminals. The Journal of Neuroscience [Internet]. Society for Neuroscience; 1996 Aug 15;16(16):5073–81. Available from: https://doi.org/10.1523/jneurosci.16-16-05073.1996

Motavkin PA. Kurs lekcij po gistologii (Course of lectures on histology). Moscow; 2007. (In Russian)

Sotelo C, Korn H. Morphological Correlates of Electrical and Other Interactions through Low-Resistance Pathways between Neurons of the Vertebrate Central Nervous System. International Review of Cytology [Internet]. Elsevier; 1978;67–107. Available from: https://doi.org/10.1016/s0074-7696(08)61887-2

Sotelo C. Cerebellar synaptogenesis: what we can learn from mutant mice. J Exp Biol. 1990 Oct;153:225-49.

Nedergaard M. Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. Science [Internet]. American Association for the Advancement of Science (AAAS); 1994 Mar 25;263(5154):1768–71. Available from: https://doi.org/10.1126/science.8134839

Cotrina ML, Kang J, Lin JH, Bueno E, Hansen TW, He L, et al. Astrocytic gap junctions remain open during ischemic conditions. J Neurosci. 1998 Apr 1;18(7):2520-37.

Alvarez-Maubecin V, García-Hernández F, Williams JT, Van Bockstaele EJ. Functional Coupling between Neurons and Glia. The Journal of Neuroscience [Internet]. Society for Neuroscience; 2000 Jun 1;20(11):4091–8. Available from: https://doi.org/10.1523/jneurosci.20-11-04091.2000

Rozental R, Andrade-Rozental AF, Zheng X, Urban M, Spray DC, Chiu F-C. Gap Junction-Mediated Bidirectional Signaling between Human Fetal Hippocampal Neurons and Astrocytes. Developmental Neuroscience [Internet]. S. Karger AG; 2001;23(6):420–31. Available from: https://doi.org/10.1159/000048729

Rash JE, Dillman RK, Bilhartz BL, Duffy HS, Whalen LR, Yasumura T. Mixed synapses discovered and mapped throughout mammalian spinal cord. Proceedings of the National Academy of Sciences [Internet]. Proceedings of the National Academy of Sciences; 1996 Apr 30;93(9):4235–9. Available from: https://doi.org/10.1073/pnas.93.9.4235

Fukuda T, Kosaka T. Gap Junctions Linking the Dendritic Network of GABAergic Interneurons in the Hippocampus. The Journal of Neuroscience [Internet]. Society for Neuroscience; 2000 Feb 15;20(4):1519–28. Available from: https://doi.org/10.1523/jneurosci.20-04-01519.2000

Rash JE, Yasumura T, Dudek FE, Nagy JI. Cell-Specific Expression of Connexins and Evidence of Restricted Gap Junctional Coupling between Glial Cells and between Neurons. The Journal of Neuroscience [Internet]. Society for Neuroscience; 2001 Mar 15;21(6):1983–2000. Available from: https://doi.org/10.1523/jneurosci.21-06-01983.2001

Rash JE, Staines WA, Yasumura T, Patel D, Furman CS, Stelmack GL, et al. Immunogold evidence that neuronal gap junctions in adult rat brain and spinal cord contain connexin-36 but not connexin-32 or connexin-43. Proceedings of the National Academy of Sciences [Internet]. Proceedings of the National Academy of Sciences; 2000 Jun 20;97(13):7573–8. Available from: https://doi.org/10.1073/pnas.97.13.7573

Popov VI, Medvedev NI, Rogachevsky VV. Tryohmernaya organizaciya sinapsov i astroglii v gippokampe krys i suslikov (Three-dimensional organization of synapses and astroglia in the hippocampus of rats and ground squirrels). Biofizika. 2003;48(2):289–308. (In Russian)

Основы современной теории феномена “боль” с позиции системного подхода. Нейрофизиологические основы. Часть 1-ая: краткое представление ключевых субклеточных и клеточных структурных элементов центральной нервной системы
Published
2019-02-21
How to Cite
1.
Poberezhnyi VI, Marchuk OV, Shvidyuk OS, Petrik IY, Logvinov OS. Fundamentals of the modern theory of the phenomenon of "pain" from the perspective of a systematic approach. Neurophysiological basis. Part 1: A brief presentation of key subcellular and cellular ctructural elements of the central nervous system. PMJUA [Internet]. 2019Feb.21 [cited 2019Sep.20];3(4):6-40. Available from: https://www.painmedicine.org.ua/index.php/pnmdcn/article/view/164
Section
Problem article